npg

COMMENTARY

Do low-affinity states of β -adrenoceptors have roles in physiology and medicine?

*,1Jonathan R.S. Arch

¹Clore Laboratory for Life Sciences, University of Buckingham, Buckingham, Bucks MK18 1EG

The pharmacology once ascribed to the ' β_4 -adrenoceptor' is now believed to be that of a low-affinity state of the β_1 -adrenoceptor. The β_2 -adrenoceptor may also have a low-affinity state or site, while the β_3 -adrenoceptor – the original low-affinity β -adrenoceptor – can display more than one pharmacology. In this issue, Mallem *et al.* show that CGP-12177 relaxes thoracic aorta rings from normal rats by stimulating vascular smooth muscle low-affinity β_1 -adrenoceptors, apparently linked in part to G_i protein. By contrast, in rings from hypertensive rats, CGP-12177 acts mainly *via* endothelial β_3 -adrenoceptors. This work raises the possibility that low-affinity states of β -adrenoceptors have physiological roles, and suggests that they might be drug targets.

British Journal of Pharmacology (2004) 143, 517–518. doi:10.1038/sj.bjp.0705991

Keywords: Atypical β-adrenoceptor; low-affinity β-adrenoceptor; β_4 -adrenoceptor; β_3 -adrenoceptor; vasodilating β-blocker;

receptor affinity state; hypertension; endothelium; G protein; CGP-12177

Abbreviations: CGP-12177, (\pm) -4-(3-t-butylamino-2-hydroxypropoxy)benzimidazol-2-one; CGP-20712, (\pm) -1-[2-((3-carbamoyl-

4-hydroxy)phenoxy)ethylamino]-3-[4-(1-methyl-4-trifluoromethyl-2-imidazoyl)phenoxy]-2-propanol

If only receptor pharmacology were as simple as the textbooks suggest... but then it would be a lot less interesting, as Mallem *et al.* (2004) demonstrate in this issue. Consider β -adrenoceptors. For many years classical pharmacology suggested that there were just two subtypes: β_1 and β_2 . Then, the discovery of agonists with a novel tissue selectivity backed up earlier evidence for a third subtype, 'an atypical β -adrenoceptor', that is resistant to blockade by most β_1 - and β_2 -adrenoceptor antagonists. Once β_3 -adrenoceptor had been cloned, everything seemed to fit into place: atypical β -adrenoceptors were β_3 -adrenoceptors (see Arch, 2002).

But this cosy story did not survive for long. It was undermined in part by studies using 'nonconventional partial agonists'. These are potent antagonists of β_1 - or β_2 -adrenoceptors which, at higher concentrations, stimulate β_3 -adrenoceptors, including cloned β_3 -adrenoceptors. One such compound is CGP-12177 ((\pm) -4-(3-t-butylamino-2-hydroxypropoxy)benzimidazol-2-one), which stimulates β_3 -adrenoceptors at concentrations roughly 1000-fold higher than those that antagonise β_1 -and β_2 -adrenoceptors. CGP-12177 was used in many studies to demonstrate a role for β_3 -adrenoceptors in tissues such as human white adipocytes. It gradually became clear, however, that the pharmacology of CGP-12177 in some tissues (initially cardiac tissues, but subsequently human white adipocytes) is not like that of cloned β_3 -adrenoceptors or of CGP-12177 in tissues where the β_3 -adrenoceptor clearly predominates: CGP-12177 was too potent; it was antagonised too well by the β_1 -adenoceptor antagonist CGP-20712 ((+)-l-[2-((3-carbamoyl-4-hydroxy)phenoxy)ethylamino]-3-[4-(1methyl-4-trifluoromethyl-2-imidazoyl)phenoxy]-2-propanol) and too weakly by propranolol. The existence of a fourth type of β -adrenoceptor pharmacology was finally confirmed when

This new pharmacology was ascribed to a ' β_4 -adrenoceptor'. Nobody was able to discover a novel gene that coded for such a molecule, however. Eventually, it was realised that cloned β_1 -adrenoceptors could respond to CGP-12177 with a pharmacology that resembled the ' β_4 -adrenoceptor' pharmacology found in atria and human adipocytes. Moreover, studies in knockout mice showed that this pharmacology was dependent upon the presence of β_1 -adrenoceptors (Konkar *et al.*, 2000; Kaumann *et al.*, 2001). The ' β_4 -adrenoceptor' is in fact a lowaffinity state of the β_1 -adrenoceptor – perhaps a state more like the 'classical' β_3 -adrenoceptor; one that binds standard β_1 - and β_2 -adrenceptor antagonists poorly.

If there is more than one affinity state of the β_1 -adrenoceptor, why should there not be others? Another β -adrenoceptor pharmacology has been described for rat isolated mesenteric artery (Kozlowska *et al.*, 2003). Moreover, the β_2 -adrenoceptor seems to have more than one binding site or state (Seifert *et al.*, 1999; Heubach *et al.*, 2004), which perhaps explains some peculiarities of responses to β -adrenoceptor agonists in skeletal muscle (Liu *et al.*, 1996). Even the β_3 -adrenoceptor – once seen as claiming a novel pharmacology all to itself – can display multiple pharmacologies: binding, adenylyl cyclase activation in membranes and cyclic accumulation in cells that express human cloned β_3 -adrenoceptors give totally different orders of potency for ligands (Arch, 2002).

So, what is the relevance of low-affinity states of β -adrenoceptors to physiology and medicine? Mallem *et al.* (2004) have made a small step towards answering this question by studying the roles of the β_3 -adrenoceptor and the low-affinity state of the β_1 -adrenoceptor in thoracic aortic rings from spontaneously hypertensive and control (Wistar Kyoto)

it was shown that (–)-CGP-12177 behaves as an atypical β -adrenoceptor agonist in atria and brown adipocytes from β_3 -adrenoceptor knockout mice (Kaumann *et al.*, 1998; Cohen *et al.*, 2000).

^{*}Author for correspondence; E-mail: jon.arch@buckingham.ac.uk

J.R.S. Arch Commentary

rats. Their goal was to understand why there is a decrease in vascular relaxation in response to β -adrenoceptor stimulation in hypertension.

In control rats, Mallem *et al.* found an endothelium and nitric oxide-*independent* relaxation in response to CGP-12177, which was reduced by high concentrations of the β_1 -adrenoceptor antagonist CGP-20712, but not by two β_3 -adrenoceptor antagonists. In other words, the response appeared to be mediated by low-affinity β_1 -adrenoceptors (' β_4 '-adrenoceptors) in vascular smooth muscle. By contrast, in thoracic aortic rings from hypertensive rats, CGP-12177 produced mainly an endothelium and nitric oxide-*dependent* relaxation that was strongly reduced by the β_3 -adrenoceptor antagonists, but not by the β_1 - and β_2 -adrenoceptor antagonist nadolol. In other words, this appeared to be a β_3 -adrenoceptor-mediated response, and they were able to link it to increased β_3 -adrenoceptor expression in endothelium in vessels from hypertensive rats.

The endothelium-independent response in tissue from the control rats was reduced by adenylyl cyclase inhibitors, but was amplified in preparations from pertussis toxin-pretreated rats. Pertussis toxin also partially restored the weak endothelium-independent relaxation in tissue from hypertensive rats. The authors link these findings to a report that G_i protein expression is upregulated in a rat model of heart failure and raise the possibility that the low-affinity state of the β_1 -adrenoceptor is linked to G_i . Coupling to G_i (as well as G_s) is also a feature of the β_3 -adrenoceptor and

the low-affinity state of the β_2 -adrenoceptor (Heubach *et al.*, 2004), so it may be common to all low-affinity β -adrenoceptors.

The work of Mallem *et al.* may be relevant to our understanding of vasodilating (third-generation) β -blockers. First, it raises the possibility that vasodilating β -blockers that have β_3 -adrenoceptor agonist activity might be more effective vasodilators in hypertensive subjects. Mallem *et al.* were, however, unable to demonstrate any difference between aortic rings from control and hypertensive rats in the response to the β_3 -adrenoceptor agonist SR-58611 A, a paradox that they ascribe to decreased NO bioavailability in the hypertensive rings.

Secondly, their work suggests that some third-generation β -blockers might exert their vasodilatory activity through the low-affinity state of the β_1 -adrenoceptor. But do therapeutic concentrations of β -blockers ever reach the concentrations required to activate this – or any other – low-affinity state? Does the potency plus efficacy of β -blockers at the low-affinity state relative to potency at the high-affinity state correlate with vasodilator relative to β -blocker efficacy in the clinic? And are the relative contributions of the low- and high-affinity states to the overall pharmacology of one β_1 -adrenoceptor ligand constant, or do they vary in response, for example, to the tissue G protein profile?

The pharmacology of β -adrenoceptors is, indeed, complex, and we have much more to learn about their role in physiology, disease and pharmacotherapy.

References

- ARCH, J.R. (2002). β_3 -Adrenoceptor agonists: potential, pitfalls and progress. *Eur. J. Pharmacol.*, **440**, 99–107.
- COHEN, M.L., BLOOMQUIST, W., ITO, M. & LOWELL, B.B. (2000). β_3 receptors mediate relaxation in stomach fundus whereas a fourth beta receptor mediates tachycardia in atria from transgenic β_3 receptor knockout mice. *Receptors Channels*, 7, 17–23.
- HEUBACH, J.F., RAVENS, U. & KAUMANN, A.J. (2004). Epine-phrine activates both Gs and Gi pathways, but norepinephrine activates only the Gs pathway through human beta2-adrenoceptors overexpressed in mouse heart. *Mol. Pharmacol.*, **65**, 1313–1322.
- KAUMANN, A.J., ENGELHARDT, S., HEIN, L., MOLENAAR, P. & LOHSE, M. (2001). Abolition of (–)-CGP 12177-evoked cardiostimulation in double β_1/β_2 -adrenoceptor knockout mice. Obligatory role of β_1 -adrenoceptors for putative β_4 -adrenoceptor pharmacology. *Naunyn-Schmiedeberg's Arch. Pharmacol.*, **363**, 87–93.
- KAUMANN, A.J., PREITNER, F., SARSERO, D., MOLENAAR, P., REVELLI, J.P. & GLACOBINO, J.P. (1998). (–)- CGP 12177 causes cardiostimulation and binds to cardiac putative β_4 -adrenoceptors in both wild-type and β_3 -adrenoceptor knockout mice. *Mol. Pharmacol.*, **53**, 670–675.

- KONKAR, A.A., ZHAI, Y. & GRANNEMAN, J.G. (2000). betal-Adrenergic receptors mediate beta3-adrenergic-independent effects of CGP 12177 in brown adipose tissue. *Mol. Pharmacol.*, 57, 252–258.
- KOZLOWSKA, H., SZYMSKA, U., SCHLICKER, E. & MALINOWSKA, B. (2003). Atypical beta-adrenoceptors, different from beta 3-adrenoceptors and probably from the low-affinity state of beta 1-adrenoceptors, relax the rat isolated mesentericartery. *Br. J. Pharmacol.*, **140**, 3–12.
- LIU, Y.-L., CAWTHORNE, M.A. & STOCK, M.J. (1996). Biphasic effects of the β-adrenoceptor agonist, BRL 37344, on glucose utilization in rat isolated skeletal muscle. *Br. J. Pharmacol.*, **117**, 1355–1361.
- MALLEM, M.Y., TOUMANIANTZ, G., SERPILLON, S., GAUTIER, F., GOGNY, M., DESFONTIS, J.-C. & GAUTHIER, C. (2004). Impairment of the low-affinity state β_1 -adrenoceptor-induced relaxation in spontaneously hypertensive rats. *Br. J. Pharmacol.*, **143**, 599–605.
- SEIFERT, R., GETHER, U., WENZEL-SEIFERT, K. & KOBILKA, B.K. (1999). Effects of guanine, inosine, and xanthine nucleotides on beta(2)-adrenergic receptor/G(s) interactions: evidence for multiple receptor conformations. *Mol. Pharmacol.*, **56**, 348–358.

(Received July 29, 2004) Accepted August 31, 2004)